Applying Pythagoras theorem for the given right-angled triangle, we have:
(Perpendicular)2+(Base)2=(Hypotenuese)2
⇒(P)2+(B)2=(H)2
The Trigonometric properties are given below:
S.no | Property | Mathematical value |
1 | sin A | Perpendicular/Hypotenuse |
2 | cos A | Base/Hypotenuse |
3 | tan A | Perpendicular/Base |
4 | cot A | Base/Perpendicular |
5 | cosec A | Hypotenuse/Perpendicular |
6 | sec A | Hypotenuse/Base |
Relation Between Trigonometric Identities:
S.no | Identity | Relation |
1 | tan A | sin A/cos A |
2 | cot A | cos A/sin A |
3 | cosec A | 1/sin A |
4 | sec A | 1/cos A |
Trigonometric Identities:
- sin2A + cos2A = 1
- tan2A + 1 = sec2A
- cot2A + 1 = cosec2A
No comments:
Post a Comment