Applying Pythagoras theorem for the given right-angled triangle, we have:
(Perpendicular)2+(Base)2=(Hypotenuese)2
⇒(P)2+(B)2=(H)2
The Trigonometric properties are given below:
| S.no | Property | Mathematical value |
| 1 | sin A | Perpendicular/Hypotenuse |
| 2 | cos A | Base/Hypotenuse |
| 3 | tan A | Perpendicular/Base |
| 4 | cot A | Base/Perpendicular |
| 5 | cosec A | Hypotenuse/Perpendicular |
| 6 | sec A | Hypotenuse/Base |
Relation Between Trigonometric Identities:
| S.no | Identity | Relation |
| 1 | tan A | sin A/cos A |
| 2 | cot A | cos A/sin A |
| 3 | cosec A | 1/sin A |
| 4 | sec A | 1/cos A |
Trigonometric Identities:
- sin2A + cos2A = 1
- tan2A + 1 = sec2A
- cot2A + 1 = cosec2A

No comments:
Post a Comment